Значение анализаторов в развитии ребенка

Значение анализаторов в развитии ребенка thumbnail

ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР

Как и другие анализаторы, зрительный к мо­менту рождения является недостаточно зре­лым. Сетчатка заканчивает развитие к концу первого года жизни. Слезная жидкость, имеющая важное защитное значение, в не­большом количестве секретируется со време­ни рождения, однако усиление слезообразования при плаче развивается у детей с 1,5— 2 мес жизни. Миелинизация зрительных нервных путей начинается на 8—9-м месяце внутриутробного развития и заканчивается к 3—4-му месяцу после рождения. Созревание и дифференцировка коркового отдела анали­затора заканчиваются лишь к 7 годам.

Движения глаз в первые дни жизни ново­рожденного некоординированны (один глаз может двигаться независимо от другого), толчкообразны, замедленны, наблюдаются нистагмовидные движения. Фиксация взора на предмете с одновременным торможением движения (зрительное сосредоточение) появляется не ранее 2-недельного возраста и со­ставляет в этот период всего лишь 1—2 мин. Слежение взором за движущимся предметом к 2—2,5 мес довольно совершенно.

Движения век сформированы к концу 1-го месяца жизни. Защитный мигательный реф­лекс на внезапное световое раздражение име­ется с первых дней жизни. Защитный реф­лекс смыкания век при приближении пред­метов к глазам появляется в 1,5 мес.

Зрачковый рефлекс (сужение зрачка на свет) появляется у плода в 6 мес. Расширение зрачка в темноте у плода и новорожденного выражено слабо: недостаточно развиты кру­говые мышцы радужной оболочки, зрачки узкие.

Оптическая система глаза. Хрусталик у детей очень эластичен, поэтому дети обладают большей способностью к ак­комодации, чем взрослые. Но уже с 10-летне­го возраста вследствие постепенной потери хрусталиком эластичности объем аккомода­ции уменьшается. В возрасте 10 лет ближай­шая точка ясного зрения находится на рас­стоянии 7 см, в 10 лет — 10 см, в 30 лет — 14 см, т.е. с возрастом, чтобы лучше видеть предмет, его надо удалять от глаз.

Глаза подавляющего большинства (около 90 %) новорожденных характеризуются не­большой дальнозоркостью (1—3 диоптрии), обусловленной шарообразной формой глаз­ного яблока и, следовательно, укороченной переднезадней осью глаза. Дальнозоркость (гиперметропия) постепенно к 8—12 годам жизни исчезает, и глаза становятся эмметропическими в результате увеличения переднезаднего размера глазных яблок.

Однако у значительной части детей (30— 40 %) в результате чрезмерного увеличения переднезадних размеров глазного яблока раз­вивается близорукость (миопия) — задний фокус оптической системы находится перед сетчаткой. Близорукость у детей может воз­никнуть в дошкольном и школьном возрасте. Чрезмерное увеличение глазного яблока про­исходит вследствие повышения кровенаполнения глаза и увеличения внутриглазного давления при длительном чтении в положении сидя с боль­шим наклоном головы, при напряжении ак­комодации, происходящем при недостаточ­ном освещении и продолжительном рассмат­ривании мелких предметов. Следует также заметить, что предрасположенность к близо­рукости передается по наследству (наследует­ся, в частности, недостаточная жесткость склеры). С целью профилактики развития близорукости необходимо научить детей дер­жать рассматриваемые предметы (особенно книгу при чтении) на расстоянии 35—40 см от глаз, устранить другие перечисленные причины развития близорукости.

Светочувствительность в пе­риод внутриутробного развития, судя по зрачковому рефлексу (сужение зрачка при действии света), появляется с 6 мес. Сразу после рождения она еще слишком низка, но быстро увеличивается в

первые месяцы жизни. Увеличение светочувствительности, как и совершенствование других свойств зри­тельного анализатора, происходит до 20 лет в результате созревания сетчатки и ЦНС, улуч­шаются при этом темновая и световая адап­тация зрительного анализатора.

Острота зрения у новорожденных очень низкая; она постепенно увеличивается и в 6 мес составляет 0,1, в возрасте 1 года — 0,2, в 5 лет — 0,8—1, затем в подавляющем большинстве случаев (80—90 %) острота зре­ния у детей и подростков несколько выше (0,9—1,1), чем у взрослых. В возрасте I8-­60 лет острота зрения остается практически неизменной и равна 0,8—1,0 у подавляющего большинства лиц.

Поле зрения у детей значительно уже, чем у взрослых, но оно с возрастом бы­стро увеличивается (особенно в возрасте 8 лет) и продолжает расширяться до 20— 25 лет. Восприятие пространства начинает формироваться с 3-месячного возраста в связи с созреванием сетчатки и коркового от­дела зрительного анализатора.

Объемное зрение, т.е. восприятие формы предмета, начинает формироваться с 5-месячного возраста. В интервале между 6-м и 9-м месяцем жизни устанавливается спо­собность стереоскопического восприятия пространства, возникает представление о глубине и отдаленности расположения пред­метов, чему способствуют тактильная и проприоцептивная чувствительность.

Цветовое зрение. Специфическая реакция зрительного анализатора на различ­ные цвета у детей имеется сразу после рожде­ния и заключается в характерных изменениях электроретинограммы и интенсивности функционирования различных органов и систем (вегетативные показатели). Так, фо­тостимуляция красным светом приводит к замедлению дыхания и сердечной деятель­ности, к синхронизации биопотенциалов в коре, преимущественно выраженной в зри­тельной области. Воздействие зеленым цве­том сопровождается учащением дыхания и сердечного ритма и десинхронизацией по­тенциалов в зрительной зоне коры. Методом условных рефлексов установлено наличие дифференцирования цветовых раздражите­лей с 3—4 мес. В 6 мес дети различают все цвета, начинают выбирать по цвету игрушки, но правильно называют все цвета лишь с 3 лет.

Слуховой анализатор

Структурно-функци­ональная характеристика. Развитие перифе­рических и подкорковых отделов слухового анализатора в основном заканчивается к мо­менту рождения. Миелинизация проводни­кового отдела заканчивается к 4 годам жиз­ни. Наружный слуховой проход узкий и сформирован хрящевой тканью. Окостенение стенок слухового канала заканчивается к 10 годам.

Восприятие звука возможно еще в период внутриутробного развития, о чем говорят возникновение шевеления плода и учащение у него сердцебиений в ответ на сильные звуки в последние месяцы антенатального периода. У новорожденного в ответ на силь­ный звук происходят общее вздрагивание, сокращение мимических мышц, закрывание глаз, открывание рта, выпячивание губ, урежение дыхания и пульса. Условный мига­тельный рефлекс на звук формируется в конце первого месяца жизни.

Острота слуха. У новорожденных слух (восприятие высоты и громкости) сни­жен; он улучшается к концу 2-го — началу 3-го месяца жизни. Различение звуков, раз­нящихся на 4—7 тонов, возможно на 3-ем или 4-ом месяце жизни, нормы взрослого (тонкость различения звуков до 3/4—1/2 тона) ребенок достигает в 7 мес.

Читайте также:  Развитие ребенка в семь месяцев жизни видео

Слуховой аппарат ребенка воспринимает звуки разной высоты (частота тонов до 32 000 Гц), взрослый — от 16 Гц до 20 000 Гц. Наибольшая острота слуха наблюдается в 14—19 лет. С возрастом острота слуха посте­пенно снижается.

При исследовании остроты слуха у детей и взрослых используют не только критерии частоты, но и силы (громкости) тонов. Звуки до 30 дБ слышны очень слабо, от 30 до 50 дБ соответствуют шепоту человека, от 50 до 65 дБ — обыкновенной речи, от 65 до 100 дБ — сильному шуму.

На развитие слуха у ребенка оказывает ре­шающее значение тренировка, особенно за­нятия музыкой.

Вестибулярный анализатор

Вестибулярный анализатор филогенети­чески более древний, так как сила тяжести действует всюду и постоянно. Закладка вес­тибулярного аппарата происходит одновременно с закладкой слухового анализатора в виде единого слухового пузырька, и развива­ется он довольно быстро: миелинизация вес­тибулярного нерва происходит на 4-м меся­це. Вестибулярные тонические рефлексы по­являются у плода в 4—5 мес., что свидетельст­вует о раннем созревании вестибулярного анализатора. У новорожденных наблюдаются статические и статокинетические рефлексы. У грудных детей имеются рефлексы на пря­молинейное ускорение, а также лифтные рефлексы. Особенно четко можно наблюдать эти рефлексы в первые месяцы жизни ребен­ка. Возбудимость рецепторов вестибулярного анализатора у детей старшего возраста выше, чем у взрослых. Натуральные условные вес­тибулярные рефлексы на положение кормле­ния и рефлексы на покачивание в коляс­ке вырабатываются на 3-й неделе жизни ре­бенка.

Кожный анализатор. Кожа как орган чувств начинает функционировать у плода со 2—3-го месяца, а к моменту рождения все виды кожной чувствительности выражены достаточно хорошо, хотя чувствительность кожного анализатора у новорожденного зна­чительно ниже, чем у взрослого человека. Становление всех видов кожной чувствитель­ности заканчивается в 17—20 лет. На долю кожной рецепции в первый год жизни при­ходится большая часть встречаемых раздра­жителей.

Тактильная чувствительность возникает на 5—6-й неделе внутриутробного развития, причем сначала она локализована лишь в периоральной области, затем зона чувствитель­ности расширяется, и к 11 —12-й неделе вся поверхность кожи плода становится рефлек­согенной зоной.

В первые дни жизни ребенка тактильные раздражения всех участков кожи вызывают общую двигательную реакцию. Лишь в воз­расте 1 — 1,5 мес. можно наблюдать местные (локальные) реакции. Первые локальные ре­акции можно вызвать при механическом раз­дражении области рта, век, носа (открывание рта, поворот головы, смыкание век).

С 2,5—3 мес. можно наблюдать локальные реакции и при раздражении других зон — лба, уха, живота. Характерно, что к этому возрасту появляются движения рук, позво­ляющие ребенку легко отстранить раздражи­тель.

Тактильная чувствительность возрастает с момента рождения до 17—20 лет, после чего снижается.



Источник

Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

СТРУКТУРА И ФИЗИОЛОГИЧЕСКОЕ

ЛЕКЦИЯ №4.

Учение И. П. Павлова об анализаторах. Восприятие как сложный системный процесс приема и обработки информации осуществляется на основе функционирования специальных сенсорных систем или анализаторов. Эти системы осуществляют превращение раздражителей внешнего мира в нервные сигналы и передачу их в центры головного мозга. На разных уровнях головного мозга сигналы преобразуются и перекодируются. Преобразование сенсорных сигналов в высших отделах центральной нервной системы завершается ощущениями и представлениями, опознанием образов. И. П. Павлов впервые создал представление об анализаторе как о единой системе анализа информации, состоящей из трех взаимосвязанных отделов: периферического, проводникового и центрального.

Рецепторы являются периферическим звеном анализатора. Они представлены нервными окончаниями или специализированными нервными клетками, реагирующими на определенные изменения в окружающей среде. Рецепторы различны по строению, местоположению и функциям. Некоторые рецепторы имеют вид сравнительно просто устроенных нервных окончаний, другие являются отдельными элементами сложно устроенных органов чувств, как, например, сетчатка глаза.

Центростремительные нейроны, проводящие пути от рецептора до коры больших полушарий, составляют проводниковый отдел анализатора. Участки коры больших полушарий головного мозга, воспринимающие информацию от соответствующих рецепторных образований, составляют центральную часть, или корковый отдел, анализатора.

Все части анализатора действуют как единое целое. Нарушение деятельности одной из частей вызывает нарушение функций всего анализатора.

С помощью анализаторов человек познает окружающий мир. Особенно велика роль анализаторов в трудовой деятельности. Если ограничить поступление в центральную нервную систему раздражений с разных органов чувств или полностью исключить их, то наблюдается задержка в развитии мозга, интеллекта.

Анализ воспринимаемых раздражений начинается уже в рецепторной части анализатора. Здесь идет простейший анализ, и раздражение трансформируется в процессе возбуждения. Более совершенный анализ происходит в подкорковых образованиях, результатом чего является выполнение сложных врожденных актов (вставание, настораживание, поворот головы к источнику света или звука, поддержание положения тела и др.). Высший, наиболее тонкий анализ осуществляется в коре больших полушарий головного мозга, в корковом отделе анализатора.

Сенсорные системы организма. Среди сенсорных систем организма различают зрительную, слуховую, вестибулярную, вкусовую, обонятельную системы, а также соматосенсорную систему, рецепторы которой расположены в коже и воспринимают прикосновение, давление, вибрацию, тепло, холод, боль; в соматосенсорную систему также поступают импульсы от проприорецепторов, воспринимающих движения в суставах и мышцах. Изучение интерорецепторов, расположенных во всех внутренних органах, путей проведения и переработки поступающих от них сигналов дало основание говорить о так называемой висцеральной сенсорной системе, которая воспринимает различные изменения во внутренней среде организма.

Функциональное созревание сенсорных систем. Различные анализаторные системы начинают функционировать в разные сроки онтогенетического развития. Вестибулярный анализатор как филогенетически наиболее древний созревает еще во внутриутробном периоде. Рефлекторные акты, связанные с активностью этого анализатора (например, изменение положения конечностей при повороте), отмечаются у плодов и глубоконедоношенных детей. Также рано созревает кожный анализатор. Первые реакции на раздражение кожи отмечены у эмбриона в 7,5 недели. Уже на 3-м месяце жизни ребенка параметры кожной чувствительности практически соответствуют таковым взрослого.

Читайте также:  Тесты на умственное развитие ребенка 10 лет

Адекватные реакции на раздражения вкусового анализатора наблюдаются с 9-10-го дня жизни. Тонкость дифференцировки основных пищевых веществ формируется на 3-4-м месяце жизни. До 6-летнего возраста чувствительность к вкусовым раздражителям повышается и в школьном возрасте не отличается от чувствительности взрослого.

Обонятельный анализатор функционирует с момента рождения ребенка. Дифференцировка запахов отмечается на 4-м месяце жизни.

Созревание анализаторных систем определяется развитиемвсех звеньев анализаторов. Периферические звенья в основном являются сформированными к моменту рождения. Позже других рецепторных образований формируется периферическая часть зрительного анализатора — сетчатка глаза, однако и ее развитие заканчивается к первому полугодию.

Миелинизация нервных волокон в течение первых месяцев жизни обеспечивает значительное увеличение скорости проведения возбуждения. Позже других отделов анализаторов созревают их корковые звенья. Именно их созревание в основном определяет особенности функционирования анализаторных систем в детском возрасте. Наиболее поздно завершают свое развитие области проекции в коре слухового и зрительного анализаторов. Определенная степень их зрелости к моменту рождения создает условия для различения простых зрительных и слуховых стимулов уже в период новорожденности. При изучении движения глаз установлено, что ребенок способен воспринимать элементы предъявляемых изображений с момента рождения. При введении в поле зрения геометрической фигуры движения глаз становятся менее хаотичными, концентрируясь у одной из сторон треугольника или у одного из краев круга. Интересно, что отдельные элементы изображения в раннем младенческом возрасте отождествляются с целостным предметом. Об этом свидетельствуют экспериментальные данные, показавшие, что младенцы, у которых вырабатывался условный рефлекс на целостную конфигурацию, реагировали также на ее компоненты, предъявляемые в отдельности, и только с 16 недель ребенок воспринимал целостную конфигурацию, она становилась эффективным стимулом условной реакции.

По мере созревания внутрикоркового аппарата нейронов и их связей, в течение первых лет жизни ребенка анализ внешней информации становится более тонким и дифференцированным, совершенствуется процесс опознания сложных стимулов. Период интенсивного созревания систем наиболее пластичен. Созревание коркового звена анализатора в значительной степени определяется поступающей информацией. Известно, что если лишить организм новорожденного притока сенсорной информации, то нервные клетки проекционной коры не развиваются; в сенсорно обогащенной среде развитие нервных клеток и их синаптических контактов происходит наиболее интенсивно. Отсюда очевидно значение сенсорного воспитания в раннем детском возрасте. Средствами его осуществления являются разнообразные предметы, окружающие ребенка, ярко окрашенные игрушки, привлечение внимания к их форме и цвету.

Функциональное созревание сенсорных систем не заканчивается в раннем детском возрасте. Помимо корковых отделов анализаторов в переработку поступающей информации вовлекаются и другие корковые зоны — ассоциативные отделы, участвующие в опознании стимулов, их классификации, выработке эталонов. Эти структуры созревают в течение длительного периода развития, включая подростковый возраст. Постепенность их созревания определяет специфику процесса восприятия в школьном возрасте (см. гл. IV). При изучении вызванных ответов коры больших полушарий на стимулы разной сложности, так называемых вызванных потенциалов, установлено, что ответы на сложные структурированные зрительные стимулы становятся идентичными таковым взрослого к 11-12 годам. Этому соответствуют данные офтальмологов и психологов о совершенствовании восприятия формы изображения в период обучения в школе. Поэтому чрезвычайно важным является соблюдение условий, необходимых для нормального развития сенсорной функции школьника.

Зрительный и слуховой анализаторы играют особую роль в познавательной деятельности, поэтому на особенностях их функционирования в онтогенезе и гигиенических требованиях к их нормальному развитию остановимся подробнее.

ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР

Строение глаза. Зрительное восприятие начинается с проекции изображения на сетчатку глаза и возбуждения фоторецепторов, трансформирующих световую энергию в нервное возбуждение. Сложность зрительных сигналов, поступающих из внешнего мира, необходимость активного их восприятия обусловила формирование в эволюции сложного оптического прибора. Этим периферическим прибором — периферическим органом зрения — является глаз.

Форма глаза шаровидная. У взрослых диаметр его составляет около 24 мм, у новорожденных — около 16 мм. Форма глазного яблока у новорожденных более шаровидная, чем у взрослых. В результате такой формы глазного яблока новорожденные дети в 80-94% случаев обладают дальнозоркой рефракцией.

Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые пять лет жизни, менее интенсивно – до 9-12 лет.

Глазное яблоко состоит из трех оболочек — наружной, средней и внутренней (рис. 18).

Рис. 18. Схема строения глаза

Наружная оболочка глаза — склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм. В передней части она переходит в прозрачную роговицу. Склера у детей тоньше и обладает повышенной растяжимостью и эластичностью.

Роговица у новорожденных детей более толстая и выпуклая. К 5 годам толщина роговицы уменьшается, а радиус кривизны ее с возрастом почти не меняется. С возрастом роговица становится более плотной и ее преломляющая сила уменьшается. Под склерой расположена сосудистая оболочка глаза. Толщина ее 0,2-0,4 мм. Она содержит большое количество кровеносных сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилиарное) тело и радужную оболочку (радужку).

В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну.

Хрусталик — это прозрачное эластичное образование, имеющее форму двояковыпуклой линзы. Хрусталик покрыт прозрачной сумкой; по всему его краю к ресничному телу тянутся тонкие, но очень упругие волокна. Они сильно натянуты и держат хрусталик в растянутом состоянии. Хрусталик у новорожденных и детей дошкольного возраста более выпуклой формы, прозрачен и обладает большей эластичностью.

В центре радужки имеется круглое отверстие — зрачок. Величина зрачка изменяется, отчего в глаз может попадать большее или меньшее количество света. Просвет зрачка регулируется мышцей, находящейся в радужке. Зрачок у новорожденных узкий. В возрасте 6-8 лет зрачки широкие вследствие преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки. В 8-10 лет зрачок вновь становится узким и очень живо реагирует на свет. К 12-13 годам быстрота и интенсивность зрачковой реакции на свет такие же, как у взрослого.

Читайте также:  Развитие зрения и слуха у новорожденного ребенка

Ткань радужной оболочки содержит особое красящее вещество – меланин. В зависимости от количества этого пигмента цвет радужки колеблется от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. При отсутствии пигмента (людей с такими глазами называют альбиносами) лучи света проникают в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок. У них недостаток пигмента в радужке часто сочетается с недостаточной пигментацией кожи и волос. Зрение у таких людей понижено.

Между роговицей и радужкой, а также между радужкой и хрусталиком имеются небольшие пространства, называемые соответственно передней и задней камерами глаза. В них находится прозрачная жидкость. Она снабжает питательными веществамироговицу и хрусталик, которые лишены кровеносных сосудов. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой — стекловидным телом.

Внутренняя поверхность глаза выстлана тонкой (0,2—0,3 мм), весьма сложной по строению оболочкой — сетчаткой, или ретиной. Она содержит светочувствительные клетки, названные из-за их формы колбочками и палочками. Нервные волокна, отходящие от этих клеток, собираются вместе и образуют зрительный нерв, который направляется в головной мозг. У новорожденных детей палочки в сетчатке дифференцированы, число колбочек в желтом пятне (центральная часть сетчатки) начинает возрастать после рождения и к концу первого полугодия морфологическое развитие центральной части сетчатки заканчивается.

Оптическая система глаза. Поступающие в глаз световые лучи, прежде чем они попадут на сетчатку, проходят через несколько преломляющих сред. К ним относятся роговица, водянистое вещество передней и задней камер глаза, хрусталик и стекловидное тело. Каждая из этих сред имеет свой показатель преломляющей силы. Преломляющая сила выражается в диоптриях (Д). Одна диоптрия — это преломляющая сила линзы с фокусным расстоянием 1 м. Преломляющая сила глаза в целом равна 59 Д при рассматривании далеких предметов и 70,5 Д при рассматривании близких предметов.

Глаз — чрезвычайно сложная оптическая система, и для упрощения была предложена такая модель глаза, в которой одна выпуклая поверхность дает суммарный эффект преломления лучей во всей сложной оптической системе глаза. Пользуясь этой моделью, можно построить изображение видимого предмета на сетчатке (рис. 18). Для этого нужно провести линии от конца рассматриваемого предмета к узловой точке и продолжить их до пересечения с сетчаткой. Изображение на сетчатке получается действительным, уменьшенным и обратным.

Ребенок в первые месяцы после рождения путает верх и низ предмета. Если такому ребенку показать горящую свечу, то он, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу свечи. То обстоятельство, что мы видим предметы не в их перевернутом изображении, а в их естественном виде, объясняется жизненным опытом и взаимодействием анализаторов.

Аккомодация. Чтобы рассматриваемый предмет был ясно виден, надо, чтобы лучи от всех его точек попали на заднюю поверхность сетчатки, т. е. были здесь сфокусированы.

Когда человек смотрит вдаль, предметы, расположенные на близком расстоянии, кажутся расплывчатыми, они не в фокусе. Если глаз фиксирует близкие предметы, неясно видны отдаленные.

Попробуйте одновременно одинаково ясно увидеть шрифт книги через марлевую сетку и саму, марлевую сетку. Это вам неудастся, так как предметы расположены от глаза на разном расстоянии.

Глаз способен приспосабливаться к четкому видению предметов, находящихся от него на различных расстояниях. Эту способность глаза называют аккомодацией. Аккомодация осуществляется путем изменения кривизны хрусталика. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи от предметов сходятся на сетчатке.

Хрусталик посредством цинновой связки соединен с мышцей, располагающейся широким кольцом позади корня радужной оболочки. Благодаря деятельности этой мышцы хрусталик может менять свою форму, становиться более или менее выпуклым и соответственно сильнее или слабее преломлять попадающие в глаз лучи света.

При рассматривании предметов, находящихся на далеком расстоянии, ресничная мышца расслаблена, а связки, прикрепленные преимущественно к передней и задней поверхности капсулы хрусталика, в это время натянуты, что вызывает сдавливание хрусталика спереди назад и его растягивание. Поэтому при смотрении вдаль кривизна хрусталика и, следовательно, преломляющая сила его становятся наименьшими.

При приближении предмета к глазу происходит сокращение ресничной мышцы, связка расслабляется. Это прекращает сдавливание и растягивание хрусталика. Вследствие эластичности хрусталик становится более выпуклым и его преломляющая силаувеличивается.

При смотрении вдаль радиус кривизны передней поверхности хрусталика 10 мм, а при наибольшем напряжении аккомодации, т. е. при четком видении максимально приближенного к глазу предмета, радиус кривизны хрусталика составляет 5,3 мм.

Аккомодация глаза начинается уже тогда, когда предмет находится на расстоянии около 65 м от глаза. Отчетливо выраженное сокращение ресничной мышцы начинается на расстоянии предмета от глаза 10 и даже 5 м. Если предмет продолжает приближаться к глазу, аккомодация все более усиливается и, наконец, отчетливое видение предмета становится невозможным. Наименьшее расстояние от глаза, на котором предмет еще отчетливо виден, называется ближайшей точкой ясного видения. У нормального глаза дальняя точка ясного видения лежит в бесконечности.

С возрастом аккомодация изменяется (табл. 1). В 10 лет ближайшая точка ясного видения находится на расстоянии менее 7 см от глаза, в 20 лет — 8,3 см, в 30 лет— 11 см, в 40 лет — 17 см, в 50 лет — 50 см, в 60-70 лет она приближается к 80 см.

Преломляющие свойства, или рефракция, обеспечивают фокусирование изображения на сетчатке. Для четкого изображения необходимо, чтобы параллельные лучи от изображения сходились па сетчатке. Существуют два основных вида аномалии рефракции – дальнозоркость и близорукость.

Таблица 1

Дата добавления: 2014-11-29; Просмотров: 5587; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник