Роль таурина для развития ребенка

Роль таурина для развития ребенка thumbnail

Таурин отвечает за полноценное развитие малыша от рождения и до взрослого периода. Его присутствие в организме в правильных дозах обеспечивают детские питательные смеси.

Без аминокислот, микроэлементов, других соединений невозможен здоровый рост и развитие грудничка. Свободную сульфокислоту, которая отвечает за множество биохимических реакций в организме, включая головной мозг, таурин – младенцы получают с материнским молоком. Вещество таурин в детских смесях – важнейший составляющий компонент питания, без которого не будет нормально функционировать организм, а ребёнок – расти здоровым.

Интересно, что у доношенных младенцев синтез таурина начинается лишь через 1,5 месяца после рождения. До этого и в дальнейшем, до определённого возраста, малыши получают чудесную сульфоаминовую кислоту из грудного молока либо детского питания. И даже взрослые потребляют таурин только с некоторыми видами продуктов:

  • сливочным маслом и сыром;
  • яйцами;
  • мясом и печенью;
  • морепродуктами.

таурин в детских смесях

Сульфокислота таурин

Чтобы получить представление о таурине, понять, что это такое, обратимся к фактам. Данная сульфоаминовая кислота – результат синтеза, в котором участвуют органические молекулы цистеин и метионин.

Полученное соединение таурин, в отличие от родителей-аминокислот, находится в организме в несвязанном состоянии и не участвует напрямую в построении белков. Тем не менее, он находится практически в любой нашей ткани, отвечая за её нормальную работу.

Повышенные концентрации таурина присутствуют в глазной сетчатке, сердечной мышце, мускулатуре скелета, спинно-мозговом веществе. Содержание сульфоаминовой кислоты таурин в головном мозге грудничка в разы превосходит концентрацию в мозге взрослого человека.

Нормой для организма считается объём таурина 1 миллиграмм на 1 кг веса. При лактации и грудном вскармливании его содержание соответствует 4-5 мг на 100 миллилитров. Для малышей, находящихся на искусственном питании, правильные дозировки таурина, присутствующие в детских смесях, невозможно переоценить.

Полезные свойства тауриновой кислоты

Теоретические и практические исследования «чудесной молекулы» таурина показали, как влияет на ребенка её присутствие в организме. Отвечая за нормальное функционирование большинства органов и систем, тауриновая кислота обеспечивает общее здоровое состояние человека. Её наличие содействует:

  • правильной работе сердечной мышцы с нормальным ритмом сокращений;
  • профилактике слияния тромбоцитов и разжижению кроветока;
  • нормальному содержанию холестерина, регулируя его уровень;
  • связыванию и выведению кислот из жёлчного пузыря и протоков;
  • бесперебойному обмену жиров и сахаров;
  • полноценной работе органов зрения.

Для деток в возрасте до трёх месяцев таурин является ценнейшим активным биовеществом и отвечает за:

  • формирование головного мозга, сетчатки глаза;
  • построение тканей нервной системы и формирование их «зон ответственности»;
  • укрепление иммунитета;
  • усиление антиоксидантной защиты;
  • усвояемость минеральных микроэлементов – кальция, калия, магния и др, а также жирорастворимых витаминов и переваривание жиров;
  • регулирование уровня адреналина, снижая беспокойство и раздражительность.

Дефицит туарина

Понятно, что туариновая кислота – полезное для человека вещество. Но, возможно, его действие преувеличено, а отсутствие не так уж и страшно? Ведь и в материнском молоке, и в самом организме младенца таурин появляется не сразу, а в промышленном детском питании может вообще отсутствовать. Так есть ли вред или польза от дефицита таурина?

По результатам многочисленных научных исследований было установлено, что при недостатке таурина для растущего организма возможны весьма серьёзные последствия. Выяснилось это не сразу, т.к. в первые месяцы и даже годы жизни ребёнок, как кажется, развивается нормально. Но последствия могут быть печальны.

Специалисты определили, что в группе риска, чувствительной к дефициту тауриновой кислоты, в первую очередь находятся:

  • недоношенные;
  • новорожденные с функциональной и/или морфологической незрелостью;
  • получившие гипоксию и поражение ЦНС в родах.

И даже искусственное вскармливание без содержания таурина либо с коровьим молоком, где кислота содержится в минимальных количествах, ведут к снижению интеллектуального потенциала, тугоухости, плохому зрению и заболеваниям жёлчевыделительной системы.

Передозировка таурина в организме ведёт к заторможенности, чувству сытости, сонливости. Регулярное искусственное введение сульфокислоты в больших количествах гасит природную функцию организма к её синтезу, что ведёт к нарушению обмена веществ, излишнему весу, снижению иммунитета и проч. Нерегулярный переизбыток тауриновой кислоты может выводиться из организма через почки и кишечник.

Обогащённые детские смеси

Сегодня совершенно очевидно, что при отсутствии грудного вскармливания кормление адаптированными смесями незаменимо. А благодаря многочисленным научным исследованиям и разработкам состав детского консервированного питания регулярно улучшается. Именно поэтому таурин в детском питании – обязательный компонент, который особенно показан деткам 1-го полугодия жизни.

«Техническим регламентом» на адаптированные сухие молочные смеси и сухие и жидкие молочные напитки установлено содержание тауриновой кислоты не больше 80 мг на 1 литр жидкого продукта. Общий объём жизненно важного компонента в детском питании, как показывает практика, варьируется. Он может составлять от 32 мг до 60 мг.

Для подавляющего ассортимента частично/менее и высокоадаптированных как стартовых, так и переходных молочных смесей, средний показатель таурина соответствует 40 – 50 миллиграммам на 1 л. Как обычно, следует внимательно просмотреть данные на упаковке продукта, выбирая смесь своему малышу.

Практикуется следующая маркировка:

  • Pre – для маловесных/недоношенных;
  • 1 – для новорождённых от 0 до 6-ти месяцев;
  • 2 – от 5-6 месяцев;
  • 0-12 – с возраста 2 месяца.

Тауриновая кислота – незаменимый элемент для здорового роста и развития ребёнка. Не пренебрегайте этим обязательным компонентом питания, но и не преувеличивайте его дозы, вводя молочные смеси и прикорм. От вашей заботы и внимания к малышу зависит его здоровое будущее.

Жми Поделиться, порадуй своих друзей!

Источник

Комментарии

Опубликовано в журнале:

«ФАРМАТЕКА» №16 — 2012, с.60

М.Б. Анциферов, д.м.н., профессор
Эндокринологический диспансер ДЗ, Москва
ГБУЗ “Эндокринологический диспансер” Департамента здравоохранения г. Москвы

В представленном обзоре рассматриваются роль таурина в метаболизме, последствия его дефицита и эффекты, которые наблюдают- ся при устранении недостатка таурина в организме. Обсуждается вклад таурина в профилактику и лечение сахарного диабета и его осложнений, а также в снижение рисков сердечно-сосудистых заболеваний.

Ключевые слова: таурин, дефицит таурина, сердечно-сосудистые риски, сахарный диабет

The present review considers the role of taurine in the metabolism, the consequences of the taurine deficiency, and the effects that are observed in restoration of taurine deficiency in the body. The contribution of taurine in the prevention and treatment of diabetes and its complications, as well as in reduction the cardiovascular risk are discussed.

Keywords: taurine, taurine deficiency, cardiovascular risk, diabetes

Таурин (2-аминоэтансульфоновая кислота) является конечным продуктом обмена аминокислот, содержащих серу (метионина, цистеина, гомоцистеина, цистина). Ключевую роль в синтезе таурина у животных играет фермент цистеинсульфинат декарбоксилаза, активность которой у человека ограничена. Поэтому источником таурина для человека в основном является животная пища, т. к. в растениях таурин не встречается [1]. Аналогично человеку некоторые виды животных также могут получать таурин только с едой.
Рекордсменами по содержанию таурина являются морепродукты.
Открытый в начале XIX в., таурин привлек к себе внимание исследователей лишь в середине XX столетия.
В большинстве случаев таурин описывается как основной осморегулятор клетки, мембранный протектор, регулятор внутриклеточного кальция, обладающий свойствами антиоксиданта, детоксикатора, который участвует в обмене жиров и жирорастворимых витаминов, влияет на воспалительные процессы.
Кроме того, следует отметить еще одну потенциально важную реакцию: взаимодействие таурина и уридина с образованием 5-тауринометилуридина, в результате чего происходит модификация тРНК митохондрий [2, 3], что влияет на митохондриальный синтез белка [4, 5].
Имеются сообщения о терапевтических эффектах таурина при лечении эпилепсии [7], тканевой ишемии [8, 44], ожирения [9], сахарного диабета 2 типа [10], артериальной гипертензии [11], застойной сердечной недостаточности [12]. Таурин оказывал благоприятное действие на сосуды курильщиков [9], больных, получавших метотрексат [14], при алкоголизме [13], инфаркте миокарда [15]. Содержание таурина исследовали при нейродегенеративных процессах в пожилом возрасте [16, 17], при лучевой болезни [18].
Благоприятное действие таурина при столь различных заболеваниях обнаруживается лишь в том случае, если в организме существует его дефицит. Если же в организме нет дефицита этого субстрата, его употребление не оказывает никакого воздействия – ни положительного, ни отрицательного.
Поскольку физиологические функции таурина разнообразны, разнообразны и эффекты от его применения.
Максимальная доза препарата, которая была испытана в клинике и не вызывала никаких токсических проявлений, составила 15 г/сут. При остром и хроническом введении таурина в очень высоких дозах (1 г/кг) не отмечено гибели экспериментальных животных.

Читайте также:  Индивидуальная карта развития ребенка в средней группе детского сада

Последствия дефицита таурина для животных

Концентрация вещества в плазме животных менее 30 мкмоль/л расценивается как его дефицит [30]. Дефицит таурина вызывает дилатационную кардиопатию у кошек. Кроме того, при дефиците таурина у кошек изменяются параметры антикоагулянтной и фибринолитической активности крови, развивается ретинальная дегенерация, кардиопатия, изменяется функция белых клеток крови, наблюдается нарушение роста и развития.
Устранение дефицита таурина значительно улучшает эти показатели, а также прогноз выживания животных и миокардиальную функцию [28, 29].
Дефицит таурина может стать причиной дилатационной кардиомиопатии и у собак. У собак некоторых пород наблюдалось существенное улучшение функции миокарда после добавления таурина в рацион [31]. Нормальная концентрация таурина в плазме крови собак составляет 50–180 нмоль/мл. Добавление таурина и карнитина собакам значительно улучшает прогноз при дилатационной кардиомиопатии [32].
Одной из моделей для изучения роли таурина являются животные, у которых выключен ген, ответственный за синтез транспортной тауриновой системы (TauTKO). Известно, что таурин проникает в клетки животных против концентрационного градиента по высокоспецифичной транспортной системе. У мышей, лишенных такой транспортной системы, наблюдается увеличение экспрессии мРНК натрий- уретического гормона в мозге и тяжелых цепей β-миозина. Способность таких мышей выполнять физическую нагрузку (в данном исследовании – плавать) падает в 10 раз. У животных развивается кардиопатия [33], наблюдается дисфункция органов зрения, слуха, почек, печени [34–36].
Все это свидетельствует о важной роли таурина в работе многих органов и систем животных.

Таурин в женском молоке и искусственное вскармливание детей

Достаточно интересно исследование, в котором недоношенным младенцам, рожденным в 1982–1985 гг., назначали стандартную схему кормления, разработанную для детей, рожденных в срок. Впоследствии при проведении тестов на ментальное развитие (Bayley mental development index) в возрасте 18 месяцев и мате- матические способности (WISC-R arithmetic subtest) в 7-летнем возрасте было выявлено, что эти дети имели более низкие показатели развития, чем те, которые получали искусственное вскармливание, соответствующее стандартам питания для недоношенных детей, т. е. обогащенное различными нутриентами [25]. Была выдвинута гипотеза, согласно которой таурин необходим для нормального ментального развития. Сравнительный анализ ингредиентов, содержащихся в детском питании, показал, что таурин является тем питательным веществом, наличие которого может объяснить это явление. Кроме того, обсуждается роль таурина в нормальном развитии мозга и его роли как антиоксиданта [26].

Таурин для лиц пожилого возраста и после травмы

Изменение уровня таурина у пожилых людей также неблагоприятно сказывается на обмене веществ. Jeevanandam и соавт. показали, что концентрация таурина в плазме крови лиц пожилого возраста составляет 46 ± 3 мкмоль/л, а молодых – 81 ± 7 мкмоль/л. После травмы уровень таурина у пожилых пациентов падает еще больше – до 30 ± 5 мкмоль/л, а у молодых – до 33 ± 5 мкмоль/л [27]. Таким образом, можно говорить о целесообразности дополнительного потребления таурина в пожилом возрасте, а также в молодом возрасте – после получения травмы или хирургического вмешательства.

Таурин и сердечно-сосудистые риски

В 1982–2005 гг. Y. Yamori (Институт мирового развития здравоохранения, Университет Мукогавы, Япония) провел многоцентровое масштабное эпидемиологическое исследование CARDIAC (Cardiovascular Diseases and Alimentary Comparison – сравнение сердечно-сосудистой заболеваемости и особенностей питания), выполненное при участии ВОЗ, в котором участвовали мужчины и женщины из 61 популяции. Исследование выявило обратную корреляцию между потреблением таурина и смертностью населения от ишемических заболеваний сердца. Анализ данных с помощью метода ступенчатой линейной регреcсии показал, что смертность от ИБС на 59 % обусловлена дефицитом таурина и отношением n-3 полиненасыщенных к насыщенным жирным кислотам в пище.
Средние показатели потребления таурина (об этом судят по его выделению с мочой) в нашей стране очень низкие. Так, у женщин, живущих в Москве, среднее количество выделяемого с мочой таурина составляет 127 мкмоль/ сут, а у жителей Беппу (Япония) – 1590 мкмоль/сут. В соответствии с результатами этих исследований можно предположить, что смертность в России выше, чем в Японии, что соответствует действительности [19].
Было проведено сравнение популяций, потребляющих большие количества таурина с едой (> 639,4 ммоль/ сут), и популяций с потреблением таурина Таурин и сахарный диабет

Многочисленные исследования показывают, что содержание таурина в тканях у больных СД значительно снижено [45]. Это может быть связано с накоплением сорбитола в тканях при активации полиолового пути окисления глюкозы в условиях гипергликемии. С одной стороны, это приводит к снижению синтеза таурина в клетках, а с другой стороны – к снижению активности глутатионредуктазы и, следовательно, к уменьшению восстановления окисленного глутатиона, что приводит к окислительному стрессу клетки [46]. Показано, что таурин снижает содержание сорбитола в условиях гипергликемии, таким образом проявляя свойства антиоксиданта. Как известно, основная причина смерти больных сахарным диабетом коронарная болезнь сердца. Ключевую роль в ее развитии играют эндотелиальная дисфункция, дислипидемия и повышенная агрегация тромбоцитов. Обнаружено, что таурин способен связывать липидные гидроперекиси, нарушающие целостность эндотелиального эпителия, и таким образом предотвращать апоптоз клеток, а также развитие эндотелиальной дисфункции [53]. Таурин в составе таурохолевых желчных кислот принимает активное участие в выведении холестерина. Показано, что прием таурина снижает уровень холестерина у крыс, получающих атерогенную диету [47, 48].
Снижение содержания таурина в тромбоцитах больных СД приводит к повышению внутриклеточного Ca 2+ в них, т. к. данное вещество является важнейшим регулятором внутриклеточного кальция [50–52]. Это сопровождается повышением агрегационной способности тромбоцитов и возрастанием риска тромбообразования. Применение таурина больными СД сопровождается снижением гиперреактивности тромбоцитов [49, 53].
Хорошо известно значение активации полиолового пути окисления глюкозы в генезе диабетической ретинопатии, катаракты, нейро- и нефропатии. Внутриклеточное накопление сорбитола ведет к т. н. осмотическому и окислительному стрессу. Таким образом, вполне логичным представляется применение таурина как осморегулятора и антиоксиданта в целях профилактики прогрессирования диабетических осложнений.
Течение СД 2 типа характеризуется прогрессирующей инсулиновой недостаточностью, в конечном итоге приводящей к необходимости перевода пациентов на заместительную инсулинотерапию. Развитие инсулиновой недостаточности при СД 2 типа связывают с эффектом глюкозотоксичности за счет индукции окислительного стресса и апоптоза β-клеток поджелудочной железы [54]. Протективная роль таурина показана в эксперименте на изолированных островках Лангерганса в условиях окислительного стресса, индуцированного высокими концентрациями глюкозы [55] или жирных кислот [56].
Таурин является необходимой аминокислотой для формирования нормальной инсулинсекретирующей функции островков при внутриутробном развитии. При исследовании секреции инсулина у новорожденных крысят было показано, что секреторные возможности β-клеток крысят, матери которых получали низкопротеиновую диету во время беременности, были значительно снижены по сравнению с контролем. В то же время у крысят, матери которых во время гестации получали таурин вместе с низкопротеиновой диетой, секреция инсулина не отличалась от контроля [57].
Эти данные позволяют предполагать связь между снижением уровня таурина во время беременности и возможностью развития СД 2 типа у потомства в будущем [58].
Одним из основных патогенетических факторов развития СД 2 типа является инсулинорезистентность, которая прогрессирует по мере развития нарушений углеводного обмена, связанных с окислительным стрессом. При самоокислении глюкозы в условиях гипергликемии происходит избыточное образование диацилглицерола – основного стимулятора активности протеинкиназы С (ПКС). Активация ПКС ведет к нарушению проведения сигнала через инсулиновые рецепторы клеток. Таурин подавляет активность ПКС за счет снижения продукции диацилглицерола. Изучая чувствительность к инсулину у крыс с ожирением и спонтанным СД 2 типа, Y. Nakaya и соавт. обнаружили повышение чувствительности к инсулину, связанное с улучшением липидного обмена, снижением окисляемости липопротеидов и уровня пероксинитрита (косвенные маркеры окислительного стресса), что позволяет предполагать непрямое антиоксидантное действие таурина [59].

Читайте также:  Что необходимо для развития ребенка

Гестационный сахарный диабет

В одном из исследований обследовались 72 женщины, из них 43 – с гестационным сахарным диабетом (ГСД) в анамнезе, 7 – с нарушенной толерантностью к глюкозе (НТГ) и 22 – с нормальной толерантностью к глюкозе. Глюкозотолерантный тест проведен на 24–28-й неделе беременности [24].
Было выявлено, что таурин в плазме значительно ниже у женщин, имевших в анамнезе ГСД, но не у женщин с НТГ. Кроме того, уровень таурина в плазме был обратно пропорционален площади под кривой глюкозы до беременности и отношению С-пептид/ глюкоза во время и после беременности (p Итак, дефицит таурина наблюдается при различных заболеваниях. В настоящее время можно говорить о важной роли таурина в качестве модулятора многих патофизиологических процессов в организме человека. Есть основания считать, что достаточное потребление таурина и устранение его дефицита в организме позволят более эффективно бороться со многими хроническими неинфекционными заболеваниями.

ЛИТЕРАТУРА

1.Worden JA, Stipanuk MH. A comparison by species, age and sex of cysteinesulfinate decarboxylase activity and taurine concentration in liver and brain of animals. Comp Biochem Physiol B 1985; 82(2):233–39.
2. Kirino Y, Goto Y-I, Campos Y, Arenas J, Suzuki T. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci USA 2005;102:7127–32.
3. Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. Embo J 2002;21:6581–89.
4. Kirino Y, Yasukawa T, Ohta S, et al. Codon- specific translational defect caused by wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci USA 2004;101:15070–75.
5. Schaffer SW, Azuma J, Mozaffari M. Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 2009;87:91–9.
6. Barbeau, Donaldson J. Zinc, taurine, and epilepsy. Archives of Neurology 1974;30(1):52–8.
7. Sahin MA, Yucel O, Guler A, et al. Is there any cardioprotective role of Taurine during cold ischemic period following global myocardial ischemia? J Cardiothorac Surg 2011;6:31.
8. Fennessy FM, Moneley DS, Wang JH, et al. Taurine and vitamin C modify monocyte and endothelial dysfunction in young smokers. Circulation 2003;107(3):410–15.
9. Chauncey KB, Tenner TE, Tenner TE. The effect of taurine supplementation on patients with type 2 diabetes mellitus. Advances in Experimental Medicine and Biology 2003;526:91–6. 10. Fujita T, Ando K, Noda H Y, et al. Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension. Circulation1987;75(3):525–32.
11. J. Azuma, A. Sawamura, N. Awata, et al. “Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial,” Clinical Cardiology 1985;8(5):276–82.
12. Wilde MI, Wagstaff AJ. “Acamprosate. A review of its pharmacology and clinical potential in the management of alcohol dependence after detoxification. Drugs 1997;53(6):1038–53.
13. Getiner M, Sener G, Sener G. Taurine protects against methotrexate-induced toxicity and inhibits leukocyte death. Toxicol Appl Pharmac 2005;209(1):39–50.
14. Singh RB, Kartikey K, Charu AS, et al. Effect of taurine and coenzyme Q10 in patients with acute myocardial infarction. Advances in Experimental Medicine and Biology 2003;526;41–8.
15. Wallace DR, Dawson R. Decreased plasma taurine in aged rats. Gerontology 1990;36(1):19–27.
16. Barbeau A, Inoue N, Tsukada Y, Butterworth RF. The neuropharmacology of taurine. Life Sciences 1975;17(5):669–77.
17. Ярцев Е.И., Гольдберг Е.Д., Колесников Ю.А. Докшина Г.А. Таурин. Фармакологические и противолучевые свойства. М., 1975.
18. Yamori Y, Liu L, Ikeda K, Miura A, Mizushima S, Miki T, Nara Y. WHO-Cardiovascular Disease and Alimentary Comprarison (CARDIAC) Study Group. Distribution of twenty-four hour urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: results from the WHO-CARDIAC study. Hypertens Res 2001;24(4):453–57.
19. Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. From 17th International Meeting of Taurine Fort Lauderdale, FL, USA. 14–19 December 2009. J Biomed Sci 2010;17(1):6.
20. Sturman JA. Taurine in Development. Physiol Rev 1993;73(1).
21. Sturman, JA, Cohen PA, and GaullAULL GE. Effects of deficiency of vitamin B6 on transsulfuration. Biochem Ann NYAcad Sci 1986;477:196–213.
22. Novotny Mark J, Hogan Patricia M, Flannigan G. Echocardiographic Evidence for Myocardial Failure Induced by Taurine Deficiency in Domestic Cats. Can J Vet Res 1994;58:6–12. 23. Seghieri G, Tesi F, Bianchi L, Loizzo A, Saccomanni G, Ghirlanda G, Anichini R, Franconi F. Taurine in women with a history of gestational diabetes. Diabetes Res Clin Pract 2006.
24. Wharton BA, Morley R, Isaacs EB, Cole TJ, Lucas A. Low plasma taurine and later neurodevelopment. Archives of Disease in Childhood Fetal and Neonatal Edition 2004;89.
25. Pasantes-Morales H, Hernandez-Benitez R. Taurine and brain development: trophic or cytoprotective actions? Neurochem Res 2010;35(12):1939–43. Epub 2010 Sep 15.
26. Jeevanandam M, Young DH, Ramias L, Schiller WR. Effect of major trauma on plasma free amino acid concentrations in geriatric patients. Am J Clin Nutr 1990;51(6): 1040–45.
27. Pion PD, Kittleson MD, Thomas WP, Delellis LA, Rogers QR. Response of cats with dilated cardiomyopathy to taurine supplementation. J Am Vet Med Assoc. 1992 Jul 15;201(2): 275–84.
28. Welles EG, Boudreaux MK, Tyler JW. Platelet, antithrombin, and fibrinolytic activities in taurine-deficient and taurine-replete cats. Am J Vet Res 1993;54(8):1235–43.
29. Hayes KC, Trautwein EA. Taurine deficiency syndrome in cats. Vet Clin North Am Small Anim Pract 1989;19(3):403–13.
30. Sanderson SL. Taurine and carnitine in canine cardiomyopathy. Vet Clin North Am Small Anim Pract 2006;36(6):1325–43.
31. Kittleson MD, Keene B, Pion PD, Loyer CG. Results of the multicenter spaniel trial (MUST): taurine- and carnitine-responsive dilated cardiomyopathy in American cocker spaniels with decreased plasma taurine concentration. In: J Vet Intern Med 1997;11(4):204–11.
32. Takashi I, Shohei O, Mika T, Yasushi K, et al. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. Ito et al. J Biomed Sci 2010;17(1):20.
33. Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F, Haussinger D: Phenotype of the taurine transporter knockout mouse. Methods Enzymol 2007, 428:439–58.
34. Huang DY, Boini KM, Lang PA, Grahammer F, et al. Impaired ability to increase Ito et al. Journal of Biomedical Science 2010, 17(Suppl 1):S20 water excretion in mice lacking the taurine transporter gene TAUT. Pflugers Arch 2006;451:668–77.
35. Warskulat U, Borsch E, Reinehr R, et al. Chronic liver disease is triggered by taurine transporter knockout in the mouse. Faseb J 2006;20:574–76.
36. Ulrich-Merzenich G, Zeitler H, Vetter H, Bhonde RR. Protective effects of taurine on endothelial cells impaired by high glucose and oxidized low density lipoproteins. Eur J Nutr 2007;46(8):431–38.
37. Ito T, Fujio Y, Schaffer SW, Azuma J. Involvement of transcriptional factor TonEBP in the regulation of the taurine transporter in the cardiomyocyte. Adv Expt Med Biol 2009;643:523–32.
38. Ito T, Muraoka S, Takahashi K, Fujio Y, Schaffer SW, Azuma J. Beneficial effect of taurine treatment against doxorubicin-induced cardiotoxicity in mice. Adv Expt Med Biol 2009;643:65–73.
39. Harada H, Cusack BJ, Olson RD, Stroo W, et al. Taurine deficiency and doxorubicin: interaction with the cardiac sarcolemmal calcium pump. Biochem Pharm 1980;39:745–51. doi: 10.1016/0006-2952(90)90154-D.
40. Degardin J, Pain D, Gondouin P, Simonutti M, et al. Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol Cell Neurosci 2010 April;43(4):414–21.
41. D’Eufemia P, Finocchiaro R, Celli M, et al. Taurine deficiency in thalassemia major- induced osteoporosis treated with neridronate. Biomed Pharmacother 2010;64(4):271–74. Epub 2009 Oct 23.
42. Das J, Ghosh J, Manna P, Sil PC. Acetaminophen induced acute liver failure via oxidative stress and JNK activation: protective role of taurine by the suppression of cytochrome P450 2E1. Free Radic Res 2010;44(3): 340–55.
43. Chen W, Matuda K, Nishimura N, Yokogoshi H. The effect of taurine on cholesterol degradation in mice fed a high-cholesterol diet. Life Sci 2004;74(15):1889–98.
44. Chesney RW, Han X, Patters AB. Taurine and the renal system. J Biomed Sci. 2010; 17(1):4.
45. McManus ML, Hurchwell KBC, Trange KS. Regulation of cell vulume in health and disease. N Engl J Med 1995;333:1260–66.
46. Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 1999;13:23–30.
47. Sugiyama K, Kushima Y, Muramatsu K. Effect of methionine, cysteine and taurine on plasma cholesterol level in rats fed a high cholesterol diet. Agric Biol Chem 1984;48:2897–99. 48. Murakami S, Kondo-Ohta Y, Tomisawa K. Improvement in cholesterol metabolism in mice given chronic treatment of taurine and fed a high-fat diet. Life Sci 1999;64:83–91.
49. Hayes KC, Pronczuk A, Addesa AE, et al. Taurine modulates platelet aggregation in cats and humans. Am J Clin Nutr 1989;49: 1211–16.
50. Mazzanti L, Rabini RA, Faloila E, et al. Altered cellular Ca2+ and Na+ transport in diabetes mellitus. Diabetes 1990;39:850–54.
51. Srivastava S, Joshi CS, Sethi PP, et al. Altered platelet functions in non-insulin-dependent diabetes mellitus (NIDDM). Thromb Res 1994;76:451–61.
52. Zentay Z, Raguwanshi M, Reddi A, et al. Cytosolic Ca profile of resting and thrombin- stimulated platelets from black women with NIDDM. J Diabetes Complications 1995;9:74–80.
53. Franconi F, Miceli M, Fazzini A, et al. Taurine and diabetes – humans and experimental models. Adv Exp Med Biol 1996; 403:579–82.
54. Poitout V, Robertson RP. Minireview: secondary β-cell failure in type 2 diabetes – a convergence of glucotoxicity and lipotoxicity. Endocrinology 2002;143:339–42.
55. Han J, Bae JH, Kim SY, et al. Taurine increases glucose sensitivity of UCP2-overexpressing beta-cells by ameliorating mitochondrial metabolism. Am J Physiol Endocr Metab 2004;287(5):E1008–18.
56. Oprescu AI, Bikopoulos G, Naassan A, et al. Free Fatty Acid – Induced Reduction in Glucose-Stimulated Insulin Secretion. Diabetes 2007;56:2927–37.
57. Cherif H, Reusens B, Ahn MT, et al. Effects of taurine on the insulin secretion of rat islets from dams fed a low-protein diet. J Endocrinol 1998;159:341–48.
58. Hales CN, Barker DJP. Type 2 (non-insulin- dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992;35:595–601.
59. Nakaya Y, Minami A, Harada N, et al. Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 2000;71:54–58.

Читайте также:  Программа азбука общения развитие личности ребенка

Комментарии

(видны только специалистам, верифицированным редакцией МЕДИ РУ)

Источник